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Introduction
Singlet–singlet annihilation is a common phenomenon in molecular structures. It is often
difficult to provide experimental conditions that could prevent annihilation; therefore, it
might often be necessary to account for it while analyzing data.

Simple annihilation model can be described by rate equation:
d𝑛

d𝑡
= −𝛾𝑛2,

here 𝑛(𝑡) is the mean number of remaining excitations in the system at time t and 𝛾 is the
rate constant for annihilation. To account for both finite transfer rate and discrete
number of excitations in annihilation model, we have chosen to use Monte Carlo method
and continuous time random walk algorithm. In this work the copmarison of excitation
population kinetics in one-dimensional, two-dimensional and three-dimensional lattices
is provided, followed by analysis by approximating kinetics using statistical approach and
kinetic equation:

d𝑛

d𝑡
= −𝛾 𝑡 ∙ 𝑛2 𝑡 − 𝑘𝑟𝑒𝑙 ∙ 𝑛(𝑡),

here 𝑘𝑟𝑒𝑙 is relaxation rate.

Statistical approach
While using statistical approach, molecular aggregate is considered to be one supermolecule
and excitation dynamics are characterized by its energy levels. The relaxation process in this
case can be described by the Master equation:

𝜕

𝜕𝑡
𝑃𝑖 𝑡 = − 𝑖 ∙ 𝑘𝑟𝑒𝑙 +

𝛾 𝑡

2
𝑖 𝑖 − 1 𝑃𝑖 𝑡 + 𝑖 + 1 𝑘𝑟𝑒𝑙 +

𝛾 𝑡

2
𝑖 𝑖 + 1 𝑃𝑖+1 𝑡 ,

here 𝑃𝑖 𝑡 is a probability that at time 𝑡 there are 𝑖 excitations in the molecular system, 𝑘𝑟𝑒𝑙 is 
relaxation rate, 𝛾 𝑡 is time dependence of annihilation rate. The average number of excitations 
present at time 𝑡 is given by:

𝑛 = σ𝑖=0
𝑛0 𝑖 ∙ 𝑃𝑖.

Here 𝑛0 is the initial number of excitations in the molecular aggregate.

Algorithm

The next part of the algorithm is based on Monte Carlo method.
The fate of the excitation depends on a randomly generated number from 0 to 1, as
shown in the picture. If the excitation moves, there is a possibility that the site it has
moved to will already be occupied. In that case, all but one excitations relax from that
node as for annihilation. The process is repeated by generating new interevent times for
excitations that are left.

Eventually, number of excitations in the lattice becomes zero and the process is repeated
by generating new initial distribution of excitations. After 1 000 000 lattices have been
generated, the average kinetics is calculated considering that initial distribution of
excitations obeys a Poisson distribution. The algorithm can calculate average excitation
population kinetics using various sizes of initial populations and various sizes of the
lattice.

⟵

⟶

↝

1

0

𝑘𝑟𝑒𝑙 ∙ 𝜇

(𝑘𝑟𝑒𝑙+ 𝑘𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) ∙ 𝜇

Kinetics in 1D, 2D and 3D lattice
The model is set to calculate excitation dynamics in one-dimensional, two-dimensional and
three-dimensional lattices. In the figure below kinetics of two different initial population sizes
are presented. For both models, the number of nodes in the lattice was the same (𝑁 = 100).
One can notice that in two-dimensional lattice excitation quenching is more rapid than in one-
dimensional lattice. Although in three-dimensional lattice excitation quenching is more rapid
than in two-dimensional lattice, the difference between these two is less significant compared
two one-dimensional lattice.

Conclusions
▪ Singlet-singlet annihilation in molecular structures can be described using Monte 

Carlo method and continuous time random walk algorithm.
▪ In two-dimensional and three-dimensional lattice excitation quenching due to 

annihilation is more rapid than in one-dimensional lattice.
▪ Monte Carlo kinetics can be approximated using both kinetic equation and statistical 

approach. 

The algorithm is based on continuous time random walk. At
each time step, for every excitation (randomly distributed in the
lattice) an interevent time is calculated as a random number
from exponential distribution with mean 𝜇:

𝑇 = −(ln 𝑟) ∙ 𝜇
where 𝑟 is a uniform random variable on [0, 1]. The excitation
with the shortest interevent time generated will now have one
of two fates: moving to another position with probability to
annihilate or relax to the ground state.
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Fitting the kinetic equation
For a diffusion-limited process time dependence of the annihilation rate can be approximated
by a power law [2]. For one-dimensional lattice we have chosen to test the following 𝛾(𝑡) time
dependences (for both kinetic equation and statistical approach):

For every annihilation rate time dependence, the best values of 𝛾0 and 𝜏 are presented in the
table above. One can notice that the best fit of kinetic equation can be obtained with the fifth
𝛾(𝑡) dependence followed by the second best fit with the third 𝛾 𝑡 . The difference of sum of
squares is almost insignificant and is proportional to 10−4. The values in the table were
obtained by fitting the kinetics in one-dimensional lattice of 100 nodes and with 20 initial
excitations in the system. Kinetic equation fitting while using various initial number of
excitations is graphically presented in the picture below.

№ 𝛾(𝑡)

1 𝛾 𝑡 =
𝛾0

𝑡

2 𝛾 𝑡 =
𝛾0

1+ 𝑡/𝜏

3 𝛾 𝑡 =
𝛾0

1+𝑡/𝜏

4 𝛾 𝑡 = 𝛾0 1 − exp − 𝜏/𝑡

5 𝛾 𝑡 = 𝛾0 tanh 𝜏/𝑡

№ 𝛾0 𝜏
Sum of 
squares

1 0.008494 - 6.319613
2 0.03879 0.071238 0.177116
3 0.017795 0.301208 0.071339
4 0.021464 0.236729 0.202331
5 0.015566 0.391872 0.07121

Approximation using the statistical approach
The same five annihilation rate time dependences (see Table 1) were chosen for
approximation using the statistical approach. For every 𝛾(𝑡), the best values of 𝛾0 and 𝜏
are presented in the table below. Here the size of the lattice is 100 nodes and the initial
excitation population size is 𝑛0 = 20. The best fit of the statistical approach is obtained
with the second annihilation rate time dependence. Graphical representation of this
approximation is shown in the picture below.

№ 𝛾0 𝜏
Sum of 
squares

1 0.018044 - 8.527232
2 0.060871 0.146336 0.006581
3 0.030425 0.498047 0.082564
4 0.037279 0.377192 0.008885
5 0.02678 0.637753 0.104969

Fig. 1. The Monte Carlo method

Fig. 2. Comparison of excitation kinetics in different lattices.

Fig. 4. Statistical approach approximation using 𝛾 𝑡 that provides the 
best fit.

Fig. 3. Kinetic equation approximation using two 𝛾 𝑡 dependences that 
provide two best fits

Table 1. Annihilation rate time dependences.
Table 2. Parameter values obtained during 
kinetic equation approximation.

Table 3. Parameter values obtained 
during statistical approach 
approximation.


