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INTRODUCTION SYNTHESIS

Graphene is an allotrope of carbon that possesses unique thermal, chemical,
electrical, optical, physical, and mechanical properties. It has broad application
prospects in high-frequency electronics, water purification systems, semiconductor
materials, drug carriers, flexible energy storage, and biosensing devices [1]. Nowadays,
thermal reduction of graphene oxide (GO) is one of the potential synthesis methods to
obtain graphene in a simple, low-cost, high yield, and time-saving way. However, GO is
attributed to a class of energetic materials due to its high enthalpy change of thermal Graphite Pre-oxidized
decomposition (AH). Thus, it could decompose violently if not properly stored and graphite
handled, and cause irreversible damage [2]. Furthermore, the mechanism of thermal

reduction of GO is complex and not yet fully understood because of the consecutive Carbon suboxide (C,0,) ’
3“2

Hummers’
method

stages of water evaporation, oxygen-containing functional groups removal, and basal-
plane carbon decomposition occurring during the thermal exfoliation [3]. Therefore, it is Preparation: 150 °C
necessary to focus on the kinetic analysis of GO thermal decomposition for a deeper 3C3;H404 + P,049 = 3C30, + 4H3PO0,
understanding of the behaviour of the exothermic reduction reaction and ensuring safe
manufacturing of graphene.

The aim of this study was to analyse the impact of carbon suboxide (C;0,) on
the kinetics of GO thermal decomposition.

Applications:
a source of atomic carbon for the synthesis of carbon
nanotubes and coatings

KINETIC ANALYSIS
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Fig. 2. DCS curves of (a) GO and (b) GO_MA_P at heating rates of 2.5, 5, and 10 °C min~2.

CONCLUSION

DSC results revealed that the reduction temperature of GO is reduced (up to 125 °C) by using C;0,. Moreover, it was observed that C;0, lowers the enthalpy AH and
activation energy E_ but does not influence the reaction order n of GO thermal decomposition. The values of E, for the thermal deposition of GO and GO_MA_P were obtained
similar by using all three methods (Kissinger, Ozawa and Borchardt-Daniels). Results obtained by Borchardt-Daniels method showed that the values of E_ increase with increasing
the heating rate for both studied samples. The apparent reaction order n for both GO and GO_MA P equals 0.7. In fact, the mechanism of this process can be modelled including
simultaneous zero-order and first-order stages. The zero-order process may originate in the case when the energy consumed in the thermal decomposition reaction comes through

the basal graphene plane; then the reaction rate should not depend on the reagent concentration (i.e., the concentration of functional groups). The first-order process may occur in
the case when the energy is absorbed directly by a functional group; this time the reaction rate depends only on the concentration of the reagent. The same reaction order for GO
and GO_MA P reduction reveals the same mechanism for both processes.
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