EFFECT OF ESTERIFICATION AGENT AND SUBSTITUTION DEGREE ON HYDROFOBICITY AND THERMAL PROPERTIES OF STARCH

Laura Peciulyte^{1*}, Ugne Naruseviciute¹, Ramune Rutkaite¹

¹ Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania * laura.peciulyte@ktu.lt

The use of biodegradable polymers represent a solution to the problems of contamination caused by conventional synthetic polymers. One of such polymers is starch, which occurs widely in nature and is the second largest biomass on earth after cellulose and one of the most abundant bio-renewable materials. However, the intermolecular forces and hydrogen bonds in starch granules prevent the processing of starch in the way typical to thermoplastic materials. By reducing those interactions, the thermal properties of starch could be changed. The aim of this study was to synthesize starch esters with controllable thermal properties by using different organic anhydrides and varying the degree of substitution (DS).

Potato starch was modified with acetic (Ac) and/or octenyl succinic (OSA) anhydrides and characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The thermal properties of the modified starches were evaluated by thermogravimetry and differential scanning calorimetry. When starch was modified with octenyl succinic or acetic anhydride at low degree of substitution, DS being up to 0.62, the glass transition (Tg) temperature was not observed (Table 1) and destruction temperature (Td) of derivatives decreased with increasing DS. Tg of starch acetate with high DS higher than 0.8 was detected in the interval of 162-167 °C and Td was increasing with increasing DS. Tg was also observed for starches dual modified with both Ac and OSA even at low DS values, which was increasing with increasing DS_{Ac}. When DS_{Ac} was higher than 1.06 the Tg dependence on DS was no longer valid. Meanwhile Tg was affected by molecular weight of modified starch. The Td of dual modified starch increased with increased DS_{Ac}.

DSAc	DSosa	Td, °C	T _g , °C
0	0	291	-
0	0.06	272	-
0.30	0	292	-
0.43	0	267	-
0.62	0	240	-
0.8	0	249	162
1.10	0	249	162
1.67	0	278	167
1.88	0	312	165
0.03	0.06	287	162
0.44	0.06	279	163
0.53	0.06	302	164
1.06	0.06	318	175
1.23	0.06	316	171
1.58	0.06	315	167
1.68	0.06	312	171

Table 1. Thermal properties of modified starches